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ABSTRACT
We study L9-Liouville properties of nonnegative p-superharmonic and,
respectively, p-subharmonic functions on a complete Riemannian manifold
M. In particular, we prove that every p-harmonic function u € LI(M) is
constant if ¢ > p— 1.

1. Introduction

Liouville-type problems for harmonic functions on noncompact Riemannian
manifolds have been extensively studied since the fundamental works of Cheng
and Yau [CY], Greene and Wu [GW], and Yau {Y1-2] in the mid-70’s. In 1975
Yau [Y1] proved that complete manifolds with nonnegative Ricci curvature have
the strong Liouville property, that is, every nonnegative harmonic function on
such a manifold is constant. In [CY] Cheng and Yau showed among others that
a complete manifold is parabolic if liminf, o V(r)/r? < co. Here and in what
follows V(r) = |B(o,r)| is the volume of geodesic ball of radius r centered at
a fixed point 0 € M. Recall that M is called parabolic if every nonnegative
superharmonic function on M is constant or, equivalently, M does not carry a
positive Green’s function. On the other hand, LP-Liouville properties for (con-
tinuous) nonnegative subharmonic functions were studied e.g. in [GW], [Y2],
and in [K2-3]. Greene and Wu [GW] proved that on a complete manifold M,
whose sectional curvature is nonnegative outside a compact set, every continuous
subharmonic function v > 0 is either constant or || WP = oo for every p > 1.
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A similar result was obtained by Yau [Y2, Theorem 3 and Appendix] for p > 1
without any curvature assumption. More precisely, he showed that on a complete
manifold every such u is either constant or liminf, o (1/7) f B(o,r) ¥ > 0 for ev-
ery p > 1. Karp [K2-3] obtained essentially optimal growth rate for || Blor) u? by
showing that either u is constant or both

1 1
lim inf — u? =00 and limsup 5—— u? = 0o
=00 1% JB(or) r—o0 T2F(r) B(o,r)

hold for every p > 1 and every positive nondecreasing function F satisfying
f:o dr/rF(r) = oo for some a > 0. He also refined the result of Cheng and Yau
by showing that M is parabolic if there exists a function F' as above, with

V(r)

limsup ——*— < oo.
ree T2F(r)

There is a vast literature on various Liouville type results and therefore we just
refer to the excellent survey articles [G3] by Grigor’yan and [L] by Li for further
references and results concerning these and related topics.

Some of the above-mentioned Liouville results have their counterparts for p-
harmonic functions as well; see e.g. [H1-4]. For instance, the p-parabolicity of
manifolds is studied in [H4] in terms of the growth of V(r). Here a manifold
M is called p-parabolic if every nonnegative p-superharmonic function on M is
constant. On the other hand, several authors have simultaneously extended Yau'’s
strong Liouville result to the p-harmonic case by showing that every nonnegative
p-harmonic function on a complete manifold M is constant if a global volume
doubling condition and a weak Poincaré inequality hold on M; see [CS], [HR],
and [RSV].

In this paper we consider L?-Liouville properties of p-harmonic functions. A
step in this direction was recently taken by Rigoli, Salvatori and Vignati in [RSV].
See also [K1] for earlier related results. Our treatment covers not only p-harmonic
functions but also solutions to so-called A-harmonic equations which we introduce
next. Let G be an open subset of M and let TG = |J .o TxM. Suppose that
we are given a map A: TG — TG such that A, = A | T,M: T,M — T, M is
continuous for a.e. £ € G and that the map z — A,(X) is a measurable vector
field whenever X is. We assume further that there are constants 1 < p < oo and
0 < a < B < oo such that

(1.1) (Ash), ) > alhf?
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and

(1.2) [ Az (R)| < BIRP

for a.e. € G and for all h € T, M; in addition, for a.e. £ € G
(1.3) (Az(h) — Ag(k),h — k) >0
whenever h # k, and

(1.4) Az(AR) = |AP72AA,(R)

whenever A € R~ {0}.

We say that A is of type p if it satisfies conditions (1.1)—(1.4) with the constant
p. The class of all such A will be denoted by A,(G).

Let W1P(G) be the Sobolev space of all functions v € LP(G) whose distri-
butional gradient Vu also belongs to LP(G). We equip W1P(G) with the norm
llull, , = llull, + IVull,. The space Wy P(G) will be the closure of C(G) in
WLr(G).

A function u € W,LP(G) is a (weak) solution of the equation

(1.5) —divAg(Vu) =0
in G if
(1L6) [ (470,99 =0

for all ¢ € C§°(G). Continuous solutions of (1.5) are called .A-harmonic (of type
p). It is well-known that every solution of (1.5) has a continuous representative
by the fundamental work of Serrin [S]. In the special case Az (h) = |h|P~2h, A-
harmonic functions are called p-harmonic and, in particular, if p = 2, we obtain
harmonic functions.

A function u € W'lic”(G‘) is a supersolution of {1.5) in G if

a.7) —div Ay (Vu) > 0

weakly in G, that is

(18) [ (4el70,96) 2 0
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for all nonnegative ¢ € C§°(G). A function v is called a subsolution of (1.5)
if —v is a supersolution. It is worth pointing out that the class C§°(G) of test
functions ¢ in (1.6) and (1.8) can be replaced by W, ?(G) if Vu € LP(G); see
[HKM, 3.11].

We present our main theorem (Theorem 2.1) for so-called .A-superharmonic
and A-subharmonic functions which are closely related to super-and subsolutions
of (1.5). These functions form the basis for the nonlinear potential theory of
solutions of (1.5) that is developed in [HKM]. A function u: G — R U {00} is
A-superharmonic in G if

(i) u is lower semicontinuous,

(if) u Z o0 in each component of G, and

(iii) for each open D € G and each A-harmonic h € C(D), the inequality « > h
on 0D implies u > h in D.
Similarly, a function v is called A-subharmonic in G if —v is A-superharmonic
in G. Finally, A-superharmonic (resp. .A-subharmonic) functions are called p-
superharmonic (resp. p-subharmonic) if A (h) = |h{P~2h.

Throughout the paper ¢ will be a positive constant whose actual value may

vary even within a line.

2. Main results

In this paper we prove the following L?-Liouville property for solutions of the
A-harmonic equation (1.5). For the formulation of our main result we make a
convention t® = 1 for every ¢t € [0,00]. We assume from now on that M is a
complete, noncompact Riemannian manifold.

2.1. THEOREM: Suppose that 1 <p < oo, A€ A,(M), geR, ando€ M. Let
u: M — [0,00] be a measurable function and write

V(r) = vy q(r) = /B(o’r) ul.

Assume that

(2.2) / ” (5%) Y oo

for all r > 0. Then u is constant if either
(i) ¢ < p—1 and u is A-superharmonic in M; or
(if) ¢ > p—1 and u is A-subharmonic in M.
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2.3. Remarks: (1) Observe that (2.2) is required to hold for all > 0. This is
necessary since a nonnegative, nonconstant A-subharmonic function may vanish
identically in a ball B(o,70), say, in which case v(t) = 0 for ¢ < 7y and so (2.2)
holds for all r» < rg.

(2) The case ¢ = 0 is related to the p-parabolicity of M. Indeed, if u is a
nonnegative A-superharmonic function in M, then u¢ = 1 by our convention,
and so v(r) = |B(o,r)|. The condition (2.2) then implies that M is p-parabolic
and hence every nonnegative A-superharmonic function on M is constant; see
e.g. [H4] and [H1]. We also remark that the definition of v, ¢(r) makes sense
for a nonconstant nonnegative A-superharmonic function u regardless of our
convention since v < oo a.e. by eg. [HKM, 2.10 and 10.2] and, on the other
hand, u is positive by [HKM, 7.12].

2.4. COROLLARY:
(i) If ¢ < p—1 and u is a nonnegative A-superharmonic function in M, with
Jis vt < 0o, then u is constant.
(ii) If ¢ > p— 1 and u is a nonnegative A-subharmonic function in M, with
J3y 49 < o0, then u is constant. In particular, if u is A-harmonic (not
necessarily > 0) in M and u € LY(M), with ¢ > p — 1, then u is constant.

Theorem 2.1 is known for sub- and supersolutions of the usual Laplace equa-
tion. In fact, Sturm [St] proved 2.1 for solutions of equations Lu = 0 associated
to Dirichlet forms thus generalizing and further refining the works of Greene and
Wu [GW], Yau [Y2], and Karp [K2]. Although the formulation of Theorem 2.1
and the main idea of its proof come from [St], we feel that it will be useful to
present this generalization. Furthermore, it is worth pointing out that we prove
Theorem 2.1 not only for sub- and supersolutions of (1.5) but for A-sub- and
A-superharmonic functions as well.

The exponent ¢ = p — 1 in Theorem 2.1 is eritical in the following sense.

2.5. THEOREM: Given 1 < p < oo and an integer n > 2, there exist a complete
Riemannian n-manifold M and a nonconstant positive p-harmonic function g in
M, with [,, g°71 < co.

In the case p = n = 2, such examples of M and g were constructed by Li
and Schoen in [LS]. In their example M is the punctured unit disc B2 ~{0}
equipped with a suitable conformal change of the standard Euclidean metric and
g(z) = —loglz|. It is possible to modify their examples and obtain solutions
to 2.5 in the case where p > 2 is an integer and n > p. Another example was
given by Grigor’yan in [G2]. We choose his approach since we are interested in



368 1. HOLOPAINEN Isr. J. Math.

all possible values of p €]1,00[ and n > 2. It is worth observing that the notion
of Green’s function for (1.5) will be useful in our construction.

3. L% Liouville property

This section is devoted to the proof of Theorem 2.1. We start the proof by
collecting some facts from [HKM] in order to create suitable test functions.

3.1. LEMMA: Let u be a nonnegative nonconstant A-superharmonic function in
M,ce€R, 0e M,and R > 0. Foreachk =1,2,..., write ux, = min(u, k). Then
(a) ux belongs to Wlf)’f(M) and is a supersolution of (1.5);
(b) there exists a constant ¢ > 0 such that u; > ¢ in B(o, R);
(c) u} is bounded in B(o, R) and belongs to W*(B(o, R));
(d) i = ugy? € WO1 "P(B(o, R)) if ¢ is a nonnegative C* function vanishing
identically in M ~ B(o, R). Furthermore,

Vi = pu™ P Ve + kppu™ 1 Vu.

Proof: The claim (a) follows from [HKM, 7.2, 7.12]. In order to prove (b),
let ¢ = inf{u(z): z € B(o,R)}. Since u is lower semicontinuous and B(o, R) is
compact, there exists a point z € B(o, R), where u(z) = c. By [HKM, 7.12], a
nonconstant A-superharmonic function in a domain 2 cannot attain its infimum
in . Hence ¢ > 0 and (b) holds. The claim (c) now follows from [HKM, 1.18]
since 0 < ¢ < ux < k in B(o, R). Finally, (d) follows from (c) and [HKM, 1.24].
|

Similarly, one can prove the following lemma. for A-subharmonic functions. We
omit the details.

3.2. LEMMa: Let u be a nonnegative nonconstant A-subharmonic function in
M,k€R, o€ M, and R> 0. For each k = 1,2,..., write ux = max(u, 1/k).
Then

(a) both u and uy belong to WI})’f(M ) and are subsolutions of (1.5);

(b) there exists a constant ¢ < oo such that 1/k < ux < cin B(o, R);

(c) uf is bounded in B(o, R) and belongs to W(B(o, R));

(d) i = ugy? € W, (B(o, R)) if ¥ is a nonnegative C* function vanishing

identically in M ~ B(o, R). Furthermore,

Vi = puypP~ Ve + m/)pu"‘IVu.

The proof of 2.1 hinges on the following refinement of a Caccioppoli-type
inequality. For positive A-harmonic functions such an inequality was proven
in [H2].
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3.3. LEMMA: Fix o € M and R > r > 0. Let ¢ € C§°(M) such that
0<% <1, ¢ =1inB(o,r), and ¥ = 0 in M~B(o,R). Let k > 1 and
suppose that either
(i) w > 0 is a nonconstant A-superharmonic function in M, ux = min(u, k),
andg<p-—-1, q#0;or
(i) w > 0 is a nonconstant A-subharmonic function in M, uy = max(u,1/k),
andg>p-—1.
Then in both cases
(3.4)

1/p (p-1)/p
/ WPIVEP)P < c ( / uztwv’) ( / w"lV(ui/”)i"> ,
B(o,R) A(r,R) A(r,R)

where A(r, R) = B(o, R) ™ B(o,r) and ¢ = ¢(a, 8,p,q).

Proof: Write k = ¢ — p+ 1 and ¢ = ufy®. In the case (i), & < 0 and uy is a
supersolution of (1.5) by Lemma 3.1 (a). Respectively, in the case (ii), x > 0 and
Uy is a subsolution of (1.5). We can use gy, as a test function by the condition
{(d) in Lemma 3.1 (resp. Lemma 3.2). Thus in both cases

n/ (.AZ(Vuk),VwQ <0,
B(o,R)

and so
(3.5)

- / WP (A (Vug), Vi) > 42 / W PYP(Ao(Vu), Vg ).
A(r,R) B(o,R)

(o,R

The right hand side has a lower bound,

n2/ ul PP AL (Vug), Vug) > I€2OA/ uf PP | Vugl?
B(o,R) B(o,R)

> k*alp/ql’ /

B(o,

PIVLI/P)P >0,
R)

by (1.1). On the other hand, we use (1.2) and Hélder’s inequality to estimate
the left hand side from above,

—px / WP Ay (Vur), V) < pls|B / A
A(r,R) A(r,R)

1/p (p—1)/p
< plx|B ud | V[P WP lp/q?|V (ul/P)|P :
A(r,R) A(r,R)
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This proves the lemma. 1

Proof of Theorem 2.1: The case ¢ = 0 is already established in Remarks 2.3.
We may thus assume that ¢ # 0 and » > 0 is nonconstant. Let pp > 0 and ko > 1
be so large that u is nonconstant in B(o, pg) for every k > ko. Here uy is as
in Lemma 3.3, that is, u is A-superharmonic and ux = min(u, k) if ¢ < p—1,
and, respectively, u is A-subharmonic and v = max(u,1/k) if ¢ > p— 1. Fix
R > 7 > pg and let 9 be a cut-off function as in 3.3. Since u; is nonconstant in
B(o, R), all terms in (3.4) are positive. Hence

(e #11Y

(3.6) / u|Vy|P > ¢ T
ArR) (Jagrmy ¥V PIP)

Set

vi(t) = / Ky = / PV, and Fi(t) = / IV (/7).
B(O,t) A('I‘,R)

B(o,t)

Choose 9 such that |[Vi| < 2/(R—r). As in [St] we conclude from (3.6) by using
properties of ¢ that

w(R) - ur) = [

w2or-rp [ oo
A(m,R)

A(r,R)
q/p P
'r)p (fB(o,R) ¢plv(uk )Ip)

(aor 219 27P)"
oy (Fe(r) & Kie)?

>c(R-—-

Hence

C(R-rP \YED_ R(R) - F(r)
('Uk(R) - 'Uk(T)> < “Fe(R) Fi(m) /=11

On the other hand, a simple computation shows that

1 1/(p-1) 1 1/(p—1) _ Fi(R) — Fi(r)
<W) - (Fk(R)) 2 min(L, 1/ = 1) 5 tp B ryi/-D




Vol. 115, 2000 L9-LIOUVILLE THEOREM 371

and so

(3.7) <Fkl(—r)>1/(p_l)_(ﬁ%ﬁ)l/(p—l)zc(ﬁ)w_n-

This holds for every R > r > py. Set r; = 2ir, i =0,1,.... Then (3.7) implies
that

m—1
Fi(r)¥/ -7 = (Fk(ri)l/(l"’) — Fk(r,-+1)1/(1_”)) + Fy(rp) /1P
=0
m—1 1/(p—1) m—1 p 1/(p-1)
(rig1 —13)?P ) ( Tit1 )
3.8 >c —_— zc —_—
(39 T = (vk(n‘+1) — vk (rs) ; k(Tiv1)

gmtly

m=1 ap;io t 1/(p—1)
>c / (——) dt = c/
. Tit1 Uk(t) 2r

1=

A\ VoD
('Uk(t)) .

The rest of the proof can be divided into two parts. Consider first the subcase
0 < ¢ <p-—1of (i). Recall that now u > 0 is a nonconstant A-superharmonic
function and 4 = min(u, k). Then vx(t) = fB(o,t) uj < fB(O)t) u? = v(t). This
together with the assumption (2.2) and the estimate (3.8) imply that

1 1/(1-p) 2mtly + 1/(p-1)
—_ >c e dt = ¢
(Fk(r)) B /2 (v(t))

as m — o0o. Hence Fi(r) = 0 for every r > pg and k > kg, and thus uy, is constant
for every k > ko. This leads to a contradiction with the assumption that u is
nonconstant. Hence the theorem holds for 0 < ¢ < p — 1. The cases ¢ < 0 and
(ii) can be treated simultaneously. Indeed, u? < -+ <wuf,, <uf <---<wufin
both cases ¢ < 0 and (ii). Hence

o

v(t) =/ u? = lim uf = lim vk(t)
B(o,t)

k—oo B(o,t) k—o0

by the Lebesgue Convergence Theorem. On the other hand,

(J%)l/(p—”S (Efl(_t)y/(p-l)S (;%)—)1/(1’—1).

We conclude from the Monotone Convergence Theorem that

o [ w6
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Hence
(3.10) Fi(ry >0

as k — oo by (2.2), (3.8), and (3.9). It remains to show that (3.10) forces u to
be constant and thus leads to a contradiction. First we observe that Poincaré’s
inequality states that

(3.11) |- s | wtp = ni),
B(o,r) B(o,r)

ax :][ ul/?
B(o,r)

and c is some constant depending on M, p, o, and r. Next we conclude that

ar — a :=f ud/P
B(o,r)

where

and, furthermore,

/ luz/p —alP > |uq/p —al?
B(o,r) B(o,r)

as k — 0co. Combining this with (3.10) and (3.11) yields

/ |ud/? —qlP = 0.
B(o,r)

Since this holds for every r > pg, u is constant, which leads to a contradiction.
Hence the theorem is proven. 1

4. LP~l-integrable p-harmonic function

In this section we construct examples in order to prove Theorem 2.5. We also pose
a question on sufficient properties of M that forces nonnegative LP~!-integrable
A-superharmonic functions to be constant.

Proof of 2.5: Let M =R x S™™! equipped with a metric
ds? = dt? + 0% (t)dv?,

where o: R —]0, o0[ is a smooth function and d¥? is the standard metric of the
unit sphere S®~! normalized so that my(S™ 1) = 1. The manifold M is clearly
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complete. Let a(t) be the (n — 1)-measure of {t} x S*~1. Thus a(t) = "~ !(t).
Then we choose p(t) so that

"’ { t~ U+ exp(—19), ift>1,
a =
(—t)"(+exp((—t)7), ift< -1,
where € > 0 and
_p+te
q= o1

We claim that M carries a nonconstant positive p-harmonic function ¢ and,
furthermore, g € LP~1(M) if € > 0. We construct g so that it depends only on
the t-coordinate, i.e. ¢ = g(t), and, furthermore,

(4.1) g{t) >0 ast— —oo,

(4.2) g{t) > 00 ast—» oo,

and

(4.3) cap, ({a} x ™1, {b} x §"1) = (g(b) — g(a))"”

for all —co < a < b < 0o. Here the so-called p-capacity
capp({a} x §™1 {b} x S"”l)
is defined by

(4.4) cap,({a} x "1, {b} x §*7') = inf /M |VulP,

where the infimum is taken over all functions u € W'ltf(M ), with 4 = 0 in
] —o00,a] x S»~! and u =1 in [b,00[xS™~1. In particular, (4.1) and (4.3) imply
that

g0 = lim_cap,({a} x 5", {1} x ")
(4.5) =: cap,({—oo} x S 1, {t} x §*°1).

Observe that the limit above exists by basic properties of capacities. Thus g is
a sort of Green’s function for (1.5) with the pole at “{oo} x S™~1”; see [H1].
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By modifying a standard reasoning (cf. e.g. [HKM, 2.11]), we conclude that the
limit in (4.5) is given by

cap, ({—oo} x §*71, {t} x §*71) = (/_; (a_(lgj)l/(p—l) ds>1—p |

and so

(4.6) o(t) = /_ ; (%)1/@_1) ds.

On the other hand, it is also easy to see that the function g, defined by (4.6),
satisfies conditions (4.1)-(4.3) and that a function v,

0, ift <a,
g(t) —g(a) .
v(t) =4 ——=S——== ifa<t<hb,
D=1 56~ g(a)
1, ift > b,

is extremal for (4.4) for every —o0 < a < b < co. Thus g is p-harmonic in
M. Another way to construct g is to write the p-Laplace equation for functions
depending only on ¢ and then simply solve the equation; see [G2] for the case
p = 2. We have chosen the approach above in order to emphasize the role of
Green'’s function in this context. To verify that

/M g t= /00 g(t)Pa(t) dt < 0o

if € > 0, it is enough to show that
-1
(4.7) / g(t)* ta(t)dt < co
and
(4.8) / g(t)Pta(t)dt < oo
T

for some T > 0. Suppose that £ > 0. Consider first the case ¢ < —1. Recall that

_p+te

as) = (=) *exp((-)7), 9= EL5,
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for s < —~1. Then

o[ ) o= o (G2

- 0P (1),

So,

—1 _ 2y p—1 -1
/_ g(t)P la(t)dt = (%) /_ exp(—(—1)9) (=)~ +Dexp((—1)7) dt
_(p—12e-d
T epreopt -

Suppose then that ¢ > 1. Since

a(s) = s_(1+5)exp(—sq), qg=

for s > 1, we get

g() = (1) + /1 t (a%g)l/(p_l) ds = g(1) + /1 e (p‘“f 1) ds

=g(1)+ %:L—le)i ("'Xp (pt—q 1) meP <p%1)) '

In particular, there exist 7' > 1 and ¢ such that

g(t)P~! < cexp(t9)

for all ¢ > T'. Hence

/ g(t)Pta(t)dt < c/ exp(t9)t~(+)exp (1) dt
T T

< 0
eTe

This proves Theorem 2.5. 1

OPEN PROBLEM. Here we study the existence of nonconstant, positive, LP~!-
integrable .4-superharmonic functions in terms of the volume growth. Grigor’yan
proved in [G2] that every nonnegative superharmonic function v € L'(M) is
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constant if M is geodesically and stochastically complete. On the other hand, he
proved in [G1] that a complete manifold is stochastically complete if

/ *© rdr

—_— =0

log V(r)
It is therefore natural to study whether there exists a similar condition in terms
of the volume growth that forces every nonnegative A-superharmonic function

w € LP~1(M) to be constant. Unfortunately, we are not able to solve this problem
here but we make the following guess.

4.9. CONJECTURE: Let M be a complete manifold such that

(4.10) /Oo (log;m)p—l dr = co.

Then every nonnegative A-superharmonic function uw € LP~Y(M) is constant for
every A € A,(M).

We justify the condition (4.10) through the following example. Let M be a
spherically symmetric manifold M = R" equipped with the metric that is given
in polar coordinates (t,8) €]0,00[xS™"! as

ds? = dt* + ¢*(t)ds?,

where d6? is the standard Riemannian metric in $"~! and v is a positive smooth
function defined in [0, co[ such that (0) = 0 and %'(0) = 1. Fix ¢ > 0 and
choose 9 such that a(t), the (n — 1)-measure of {t} x S™~1, satisfies

+e€
-1’

a(t) =t~ (H+exp(t?), with ¢ = ‘Z

o /1 \Y@-1
Co = — ds.
o= [ (79)

Then the spherical function

g(t,8) = min (co, /t ” (a—(ls—))l/(p_l) ds>

is positive and p-superharmonic in M. In fact, g is p-harmonic in M ~ B(0,1).
Observe that B(0,7) = {(¢,0): t < r}. In order to study whether M carries

for t > 1. Write
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any nonconstant, nonnegative, LP~!-integrable p-superharmonic function, it is
enough to consider g, the reason for this being the same as in the linear case;
see [G2]. For completeness we include the short reasoning. Suppose that u is a
nonconstant, nonnegative p-superharmonic function in M. As in Lemma 3.1 we
conclude that inf{u(z): z € B(0,1)} > 0 and hence u > cg in B(0,1) for some
positive constant c¢. For each sufficiently large i, we write g; = max(0,g — 1/7).
Then g; is p-harmonic in a relatively compact set D; := {g > 1/i} ~ B(0,1).
Furthermore, v > ¢g; in 8D; and hence u > cg; in D; by definition. Letting
i — oo, we conclude that u > ¢g in M. Hence there exists a nonconstant,
nonnegative p-superharmonic function v € LP~1(M) if and only if g € LP~1(M).
Next we distinguish the cases € = 0 and € > 0. In both cases

exp(cr?) SV (r) S exp(r?),

where 0 < ¢ < 1 and

Here V(r) = |B(0,r)| and A(r) < B(r) means that A(r) < cB(r) for some
constant ¢ and for sufficiently large r > 0. We obtain

) p—1
T
— dr =00 and / Pl = o
/1 (IOEV(T)) Mg

if £ = 0. On the other hand,

0 r p—-1 .
—_ dr < oo and / P~ < 00
/1 (108 V(’")) Mg

if £ > 0. Thus this example gives some indication that 4.9 might be true.
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